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Abstract 

This paper investigates the validity of commonly used terramechanics models for light-weight vehicle applications 
while accounting for experimental variability. This is accomplished by means of cascading uncertainty up to the 
terminal point of operations measurement. Vehicle-terrain interaction is extremely complex, and thus models and 
simulation methods for vehicle mobility prediction are largely based on empirical test data. Analytical methods are 
compared to experimental measurements of key operational parameters such as drawbar force, torque, and sinkage. 
Models of these operational parameters ultimately depend on a small set of empirically determined soil parameters, 
each with an inherent uncertainty due to test variability. The soil parameters associated with normal loads are 
determined by fitting the dimensionless form of Bekker’s equation to the data given by the pressure-sinkage test. In 
a similar approach, the soil parameters associated with shear loads are determined by fitting Janosi and Hanamoto’s 
equation to the data given by the direct shear test. An uncertainty model is used to propagate the soil parameter 
variability through to the wheel performance based on Wong and Reece. The commonly used analytical model is 
shown to be inaccurate as the envelope of model uncertainty does not lie within the experimental measures, 
suggesting that model improvements are required to accurately predict the performance of light-weight vehicles on 
deformable terrain. 

Disclaimer:  Reference herein to any specific commercial company, product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or the Department of the Army (DoA).  The opinions of the authors 
expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not 
be used for advertising or product endorsement purposes. 
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1 Background 

 The study of the interaction of wheeled and tracked vehicles with natural terrain is dominated by the discipline 
of terramechanics. Terramechanics research over the past 50 years has primarily focused on large, heavy military 
vehicles. A substantial body of terramechanics research has been performed at the U.S. Army Tank Automotive 
Research, Development, and Engineering Center (TARDEC) and the U.S. Army Engineer Research and 
Development Center (ERDC) that led to the development of various mobility prediction methodologies including 
the NATO Reference Mobility Model (NRMM). These methodologies are numerical algorithms for predicting 
cross-country vehicle movement at length scales of several meters to several kilometers. They are based on 
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empirical results drawn from years of resource-intensive experimental testing and have been used widely by the 
military community. However, as a consequence of their empirical nature, while the methods are useful for 
prediction of large, heavy vehicle mobility, it remains an open question whether they can be reliably used for the 
prediction of small, lightweight vehicle mobility. 
 Recently the Department of Defense (DoD) has devoted substantial resources toward the development of small, 
lightweight ground vehicles.  These vehicles are often less than 36 inches in length and weigh less than 100 lb. They 
are equipped with wheels, tracks, or bio-inspired limb-like appendages. Due to the lack of mobility models for these 
vehicles, there is a lack of simulation methods for this class of vehicles. Also, since these vehicles have only 
recently been adopted by the DoD, there is a lack of systematic empirical test data. As a result, these vehicles have 
primarily been developed based on ad hoc design rules, limited empirical testing, and application of classical Bekker 
theory. Thus, there is a lack of methods (based on simulation or analysis) to reliably predict the mobility and 
performance of these systems. 
 This paper will describe two experimental methods used to characterize mechanical soil behavior for lightweight 
vehicles. A pressure-sinkage test and a standard direct shear test as outlined by Bekker in [1] were performed on a 
cohesion-less soil [2].  This paper investigates identification of soil parameters from the experimental data and 
assesses the data variability, which is inherent in both tests. The variability in the soil parameters is propagated to 
determine the overall wheel performance uncertainty. Probabilistic, rather than strictly deterministic, soil behavior is 
considered in this paper because it is an increasingly important consideration for accurate modeling of lightweight 
robotic vehicle performance. 

2 Methodology 

 Semi-empirical methods for modeling wheel performance, like the one used in this paper by Wong and Reece 
[3], rely on the relationship between soil sinkage and resistance force to infer the normal stress under a wheel. To 
predict the tractive force, the shearing strength of the soil is analyzed based on Coulomb’s formula [4]. Methods of 
this class are ultimately based on experimentally determined soil parameters, whose inherent variability causes 
uncertainty in the determination of wheel performance. Section 2.1 describes the equipment and methods used to 
determine the variability in soil parameters; Section 2.2 describes the wheel model in which these parameters are 
used and the techniques used to compare prediction to experimental data. 

2.1 Soil Parameter Variability 

 Mojave Martian Simulant (MMS) [2] was employed as a test medium for the experiments in this paper. MMS is 
a mixture of finely crushed and sorted granular basalt intended to mimic, both at a chemical and mechanical level, 
Mars soil characteristics. No direct application to Mars rovers is provided in this paper, the simulant is a frictional 
soil found in dry, sandy terrain. The particle size distribution of MMS spans from the micron to millimeter level 
with 80% of particles above the 10 micron threshold. 

Experimental Equipment 

Pressure-Sinkage Test 
 The sinkage characteristics of the MMS were measured using the pressure-sinkage test shown in Figure 1. The 
pressure-sinkage test used a plate to penetrate the soil under controlled test conditions, while pressure and sinkage of 
the plate were directly measured.  A series of tests and various plate sizes allowed an investigation of both the 
influence of the pressure-sinkage parameters as described in Wong’s methodology [5] and test-to-test variability. 
 The test unit was designed to systematically penetrate the soil with a downward velocity of 10 mm/s.  
Penetration tests were performed with three different-sized rectangular plates (3x15, 5x15, and 7x15 cm2).  The tests 
were repeated 15 times for each plate.  A load cell and draw-wire encoder recorded the force and corresponding 
sinkage during each test.  Between tests, the soil was loosened with a stick and then leveled to return the MMS to a 
nominal density of 1.7 g/cm3.  Figure 2 shows a picture of a penetration plate about to enter the soil. 
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Figure 1: CAD drawing of the pressure-sinkage test rig. 

A load cell and draw wire encoder recorded the force 
and sinkage of a plate that was pressed into the soil at 

10 mm/s. 

 
Figure 2: Penetration plate and soil (side view). 

 

Direct Shear Test 
 The direct shear test, shown in Figure 3, is used to measure the shear strength properties of the MMS, 
specifically the cohesion, angle of friction, and shear modulus. A sample of the soil is contained in between two 
rigid discs that are held in place by a shear box. The shear box is aligned under a load cell that applies a normal 
force to the soil.  
 

 
Figure 3: Experimental device for performing the direct shear test. 

 The load cell is attached to a vertical translational joint that uses a linear variable differential transformer to 
measure displacement of the soil. The top of the shear box is clamped so that the lower half can be moved. The 
horizontal force required to displace the soil horizontally is measured by a dynamometer. The applied vertical force 
and measured horizontal force can be transformed into the normal and shear stress, respectively. The horizontal and 
vertical soil displacement is also output. 
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Parameter Estimation 

Pressure-Sinkage Parameter Estimation 
 To describe the pressure-sinkage relationship of a soil’s deformation under a rectangular plate, Bekker suggested 
Equation (1) based on the soil mechanics work originally performed by Terzaghi [6]: 

 
 , nck k z

b ϕσ ⎛ ⎞= +⎜ ⎟⎝ ⎠   (1) 

where σ  is pressure, b  is plate width, z  is soil sinkage, and n , ck  and kϕ , are soil parameters.  The three 

parameters are empirical and have no intrinsic physical meaning. The parameters may be estimated from 
experimental pressure-sinkage data if at least two different plate sizes are tested. 
 The process of determining the soil parameters from experimental data was originally performed by Wong using 
a weighted least squares method [7], which is the primary estimation technique used in this paper. From Equation 
(1), taking the logarithms of both sides gives: 

 
ln ln ln .ck k n z

b ϕσ ⎛ ⎞= + +⎜ ⎟⎝ ⎠    (2) 

 An error function is defined as: 

 

2

ln ln ,lnc
r

k
F w k n z

b ϕσ⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠    (3) 

where rw  is a weighting factor.  Standard least squares minimization of equation (3) would set rw  equal to 1.  
However, as Wong explains, error would be biased toward low pressures since the actual measured values are σ  
and z , not lnσ  and ln z .  To account for minimization in the log-log domain and give equal weight to all data 
points, Wong sets the weighting factor 2  rw σ= . 
 Since ck , b , and kϕ   are constant values for a given test, they can be replaced by a single constant: 

 
.c

eq
k

k k
b ϕ= +

   (4) 

Wong provides the following cost function over N  data points that is minimized to find optimal n  and eqk in 

Equation (5): 

 
( ) 22

1

ln ln  .ln
N

i i eq i
i

F k n zσ σ
=

⎡ ⎤= − −⎣ ⎦∑
   (5) 

 The first order KKT optimality condition leads to the following two equations: 

 
( )22 2 22 ln  ln ln ln ln   0eq

F z k z n z
n

σ σ σ σ⎡∂ = − − −
∂

⎤
⎣ ⎦ =∑ ∑ ∑

   (6) 

  

2 2 2 2 ln  2 ln 2 ln   0.eq
eq eq

F k n z
k k

σ σ σ σ∂ − ⎡ ⎤= + + =⎣ ⎦∂ ∑ ∑ ∑
 (7) 

 Solving equations (6) and (7) for n  and eqk , yields: 
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∑ ∑
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 If the above analysis is performed for two sets of data corresponding to two different plate sizes  
( 1b , 2b ), the average n  and two corresponding values of eqk  can be found: 

  

( ) ( )1 2 
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b b b b
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n n
n = =

+
=

 (10) 
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∑ ∑
∑   (12) 

 Using the two values of eqk , ck  and kϕ  can be derived: 

  
( ) ( )( )1 2

1 2
2 1

 
 c eq eqb b b b

b bk k k
b b = =

= −
−  (13) 

  
( ) ( ) ( )( )2

1 1 2
2 1

    
 

.eq eq eqb b b b b b

bk k k k
b bϕ = = =

= − −
−  (14) 

 Wong’s methodology is a clear and succinct way to obtain the three pressure-sinkage soil parameters ( n , ck , kϕ ) 

from a set of experimental data. 
 To avoid difficulties resulting from covariance between soil parameters (shown by example in Section 0), 
Reece’s revision of Bekker’s equation [3] was implemented by the authors of this paper.  Reece’s equation is: 

  
( )1 2 .

nzk bk
b

σ ⎛ ⎞= + ⎜ ⎟⎝ ⎠  (15) 

where 1k and 2k are empirical soil parameters. In simplified terms, Equation (15) reduces to: 

  
' .

n

eq
zk
b

σ ⎛ ⎞= ⎜ ⎟⎝ ⎠  (16) 

where the k coefficient is denoted as '
eqk  to distinguish from the eqk of Bekker’s equation. To provide a more 

thorough analysis of pressure-sinkage parameter estimation methods, four additional, modified approaches were also 
considered.  The resulting parameters of all five methods are compared. Because Wong’s pressure-sinkage relation 



 UNCLASSIFIED  

Proceedings of the 7th Americas Regional Conference of the ISTVS 2013  Page 6 of 22 
  

and Reece’s modification have the same format for any single plate, the results of the following methods apply 
equally to both. 
 Method 1 is performed using Wong’s equations (8)-(14) previously given for individual experimental tests. 
 Method 2 is a modified version of the technique presented by Wong.  The weighting factor rw  in equation (3) is 

changed from 2σ  to 1.   The resulting equations for n  and eqk  are derived analytically using a similar approach as 

Wong: 

  
( ) ( )2

2

ln ln
ln ln  

 ,
 ln

ln  

z
z

Nn
z

z
N

σ
σ −

=

−

∑ ∑∑
∑∑

 (17) 

 

ln   ln
 .eq

n z
k exp

N
σ⎛ ⎞−

= ⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑
 (18) 

 From equation (17), ck and kφ  can be derived in the same manner as equations (13) and (14). 
 For the final three methods, Levenberg-Marquardt numerical optimization (from the lsqnonlin() function  
in MATLAB’s optimization suite [8]) is used to find n , eqk  pairs that minimize the respective error functions.  
 Method 3 minimizes error in the ordinary z σ−  domain.  No weighting was considered because error and actual 
measurements are in the same domains.  The minimization function is: 

 
2
. n

eqF k zσ⎡ ⎤= −⎣ ⎦∑  (19) 

 Method 4 has an identical error function to that of method 2: both are in the log-log domain and have wr set to 1.  
The only difference is that method 4 is numerically minimized, whereas method 2 is analytically derived.  The 
minimization function is: 

 
2

 ln .ln  lneqF k n zσ⎡ ⎤= − −⎣ ⎦∑  (20) 

 Method 5 is the numerical version of Wong’s method, method 1.  The minimization function is: 

 
22 l n n .n l  leqF k n zσ σ⎡ ⎤= − −⎣ ⎦∑  (21) 

 Methods 1-5 are summarized in Table 1. 
 

Table 1: Alternative methods to estimate pressure-sinkage parameters.  

Method Type Domain Weighting factor, wr 

1. Wong’s  Analytical log-log 2σ  

2. Wong’s  (modified) Analytical log-log 1 

3. Least-square-curve-fit Numerical z σ−  N/A  ( z σ− domain) 

4. Least-square-curve-fit Numerical log-log 1 

5. Least-square-curve-fit Numerical log-log 2σ  
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 Individual parameter estimation of the 45 pressure-sinkage tests was performed using each of the five methods.  
The error of a fit for all methods is calculated using Wong’s suggestion: 

 

2( )
2 ,

m c

m

N

N

σ σ

ε
σ

−
−=

∑

∑
 (22) 

where mσ is measured pressure, cσ  is estimated pressure, and N is the number of data points. 

Direct Shear Parameter Estimation 
 Several soil parameters can be determined using the direct shear test. Specifically, the residual shear stress, resτ , 
and shear modulus, K , can be determined by fitting the Janosi and Hanamoto equation to each data set, and the 
cohesion, c , angle of internal friction, ϕ , can be found using the Mohr-Coulomb failure criteria. 

Janosi Hanamoto Equation for Shear Stress 
 The shear-displacement expression suggested by Janosi and Hanamoto [9] assumed the form of Equation (23) 
for loose soils: 

 
1 ,

j
K

res eτ τ
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠   (23) 

where τ  represents the shear stress and j  is the displacement due to shearing. The parameters resτ  and K  are 
determined by minimizing the sum of the differences between the experimental value of τ  and the estimate at the
thi data point in Equation (24) using the Levenberg-Marquardt algorithm: 

 
( )

2

1

,, 1
ijN
K

ires res
i

F K eτ τ τ
−

=

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

 (24) 

 The first order KKT optimality condition leads to the following two equations: 

 
  0F

K
∂ =
∂   (25) 

 
0

res

F
τ
∂ =
∂   (26) 

where the partial derivatives are determined using a numerical central differences approach. 

Mohr-Coulomb Failure Criteria 
 For a given normal load, the soil is said to fail when it reaches its residual shear stress. According to the Mohr-
Coulomb failure criteria [10], a line of best fit can be determined by plotting the residual shear stress, resτ , as a 
function of normal stress , σ , as follows: 

  tan ,res cτ σ ϕ= +  (27) 
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where the intercept is equal to the cohesion and the slope is related to the angle of internal friction. The line of best 
fit is determined using the closed-form equation for linear fitting over N  data points (Equation (28)). The closed-
form equation will be useful for propagating the uncertainty in Section 0: 

 

2
,

1 1 1

,
1 1

.
tanN

i i i res i
i i i

i res

N N

N

i
i i

N

c

N

ϕ
σ σ σ τ

σ τ

= = =

= =

=⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑
  (28) 

2.2 Wheel Performance Uncertainty Propagation and Verification 

 This section details the experimental method used to obtain the wheel performance measurements, explains the 
theory behind the prediction of wheel performance, and describes the derivation behind the method of uncertainty 
propagation. Since the techniques used in this paper rely on estimates of the stress distribution to determine wheel 
performance, the ability to measure these quantities allow for a direct comparison of prediction to reality. The 
uncertainty propagation gives an envelope of system performance that the experimental data can be compared 
against. 

Experimental Methodology 

 A complete investigation into the performance of the wheel requires insight into several different measures of 
the wheel-soil interaction. In this paper, physical measurements of contact stresses, force, torque, and sinkage were 
used to compare to the theoretical model. A single-wheel test rig, shown in Figure 4, was used to empirically 
investigate the wheel motion under controlled wheel slip and normal loading conditions on the cohesion-less soil 
[11]. This test rig enables the control of velocities and application of loads through interchangeable running gear 
within a confined soil bin of dimensions 1.5 m long, 0.7 m wide, and 0.4 m deep. The drawbar pull, wheel torque, 
and sinkage were measured for a lug-less rigid wheel with a radius of 0.13 m and a width of 0.16 m at slip ratios 
varying from zero to unity. Tests were run for two different cases: normal loads of 70 N and 135 N.  
 

 
Figure 4: A single wheel test bed was used to measure the drawbar pull, torque, and sinkage at varying slips and 

normal loads. 
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Figure 5: A wheel with a custom force sensor array was used to measure the stress distribution at the contact patch. 

 To measure the stress distribution at the contact patch of the wheel, an identical wheel with a custom force 
sensor array located at the wheel surface was used [12]. The force sensors are strain gauge-based flexural elements 
with interchangeable interface surfaces that are designed for integration with wheels or other running gear. The 
normal and shear stresses are estimated based on 5 sensors, shown in Figure 6, that are located at discrete points 
from the center to the edge of the wheel-soil interface. 
 

 
Figure 6: A top view of the wheel shows the layout of the strain gauge-based sensors. Note that the sensors are 

arranged with Sensor I at the center of the wheel and Sensor V at the outer edge. 

 Each sensor, shown in Figure 7, is a solid-state L-shaped aluminum flexure instrumented with two full bridge 
strain gages. The sensor is mounted rigidly to the running gear, and its interface element is exposed to the soil. The 
interface element is generally subjected to normal, N , and shear, T , loading. These forces cause the flexure 
elements to deflect in a linear elastic manner. From measured deflection, and given prior calibration data, the 
applied forces can be uniquely computed, with axial strain intrinsically rejected by the full bridge configuration. 
Stress can then be inferred assuming uniform pressure distribution over the known sensors’ head area. 
 

 
Figure 7: Working scheme of the custom force sensor for interfacial stress measurement. 

Mathematical Model of Rigid Wheel on Soft Soil 

 The rigid wheel free-body diagram based on the work of Wong and Reece [3], shown in Figure 8, is used in this 
paper to model the interaction between the wheel and the soil. Using this model, the drawbar pull D , torque T , and 
sinkage z , can be estimated for a wheel of weight W , radius r , and wheel width b , travelling at a linear velocity 
v . 
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Figure 8: Forces, torque, and stresses on a driven rigid wheel. 

 The sinkage of the wheel is commonly converted into polar coordinates using the wheel hub as the origin. Once 
the limits of the contact patch, 1θ  and 2θ , between the wheel and the soil are determined, the drawbar pull and torque 
can be calculated by integrating the radial and tangential stresses over the wheel. 
 At a specified slip, i , it is possible to determine the sinkage, forces, and torques that act on a wheel given the 
soil parameters and wheel properties [3]. A force balance in the vertical direction yields an equation for the weight, 
W , of the tire: 

 
( )

2

1

cos sin ,W rb d
θ

θ

σ θ τ θ θ
−

= +∫
   (29) 

where the normal stress, σ , is determined by Equation (16) and the shear stress, τ , is computed as: 

 ( )( )/tan 1 j Kc eτ σ ϕ −= + −
   (30) 

where the shear deformation, 𝑗, is based on the velocity of the slip: 

  ( ) ( )( )1 11 sin sinj r iθ θ θ θ= − − − −⎡ ⎤⎣ ⎦  (31) 

 Based on geometry, the sinkage, z , can be converted to polar coordinates using: 

 ( )1 1cos cos        Mz rθ θ θ θ θ= − ≤ ≤   (32) 

 However, it is important to note that Equation (32) can only be used when the normal stress on the wheel is 
increasing, which occurs from the front contact angle, 1θ ,  to a maximum radial stress, Mθ . At Mθ  the stress will 
begin to decrease in a similar fashion until reaching zero at the rear contact angle, 2θ . The symmetry between the 
front and rear regions is employed to derive a relationship for sinkage when the normal stress is decreasing: 

 
( )2

1 1 1 2
2

 cos cos                      M M
M

z rθ θθ θ θ θ θ θ θ
θ θ

⎛ ⎞⎛ ⎞⎛ ⎞−
= − − − − ≤ ≤⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠   (33) 

where Mθ  can be approximated as a function of 1θ  , i , and two coefficients that give an estimation of the 
maximum stress, 1c and 2c  [3]: 
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 ( )1 2 1M c c iθ θ= +   (34) 

 With the assumption that 2 0θ =  (which is true when rut recovery is small), the only unknown in Equation (29) 
becomes 1θ . The integral in Equation (29) cannot be solved analytically and is solved numerically via an iterative 
technique. After the front contact angle is determined, the forces (thrustH , motion resistance R , and drawbar pull 
D ) and the input torque, T , can be determined by integrating the stresses over the wheel contact area: 

  

1

2

cosH rb d
θ

θ

τ θ θ
−

= ∫
 (35) 

  

1

2

sinR rb d
θ

θ

σ θ θ
−

= ∫
 (36) 

  D H R= −  (37) 

  

1

2

2T r b d
θ

θ

τ θ
−

= ∫
 (38) 

 Finally, the maximum wheel sinkage, 0z , can be determined using Equation (32) at 0θ = : 

  ( )0 11 cosz rθ= −  (39) 

Uncertainty Propagation 

 The objective of any uncertainty analysis is to obtain an estimate of the overall uncertainty, i.e. uncertainty 
envelope, of an output given the individual uncertainties of the inputs. Previous work, including Virginia Tech’s 
Center for Vehicle Systems and Safety [13] and the Massachusetts Institute of Technology’s Robotic Mobility 
Group  [14], used Polynomial Chaos Theory to quantify the uncertainty associated with terramechanics systems. The 
method for propagating the uncertainty in this paper is described in [15], and summarized as follows: 
 Given an arbitrary function, r , that depends on the measured variables 1 2, ,...x x  whose distributions are normal: 

 1 2( , , ),r f x x= …   (40) 

the variance of r , 2
rσ , can be determined statistically based on discrete values of the function, ir , and the mean of 

the function, 'r , using: 

 
( )22 '

0

1lim .
N

r iN
i

r r
N

σ
→∞

=

⎡ ⎤= −⎢ ⎥
⎣ ⎦

∑
 (41) 

 The difference, irδ , between a particular value, ir , and its mean value, 'r , can be determined from a Taylor 
series expansion, where higher order terms are assumed to be negligible: 

 
( ) ( ) ( )' ' '

1 1 2 2
1 2

i i i i
r rr r r x x x x
x x

δ
⎛ ⎞ ⎛ ⎞∂ ∂= − ≅ − + − +…⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠   (42) 
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 If the equation for rδ  is substituted into Equation (41), we obtain: 

 
( ) ( )

2

2 ' '
1 1 2 2

1 1 2

1lim
N

r i iN
i

r rx x x x
N x x

σ
→∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂≅ − + − +…⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

  (43) 

which can be rearranged to yield: 

  

( ) ( )

( )( )

2 2
2 2' '

1 1 2 2
1 22

1 ' '
1 1 2 2

1 2

1lim

2

i iN

r N
i

i i

r rx x x x
x x

N r rx x x x
x x

σ
→∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥− + −⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠≅ ⎢ ⎥
⎛ ⎞⎛ ⎞∂ ∂⎢ ⎥+ − − +…⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∑

 (44) 

 Note that the variances for 1x  and 2x  can be computed as: 

 
( )22 '

1

1lim
j

N

x ji jN
i

x x
N

σ
→∞

=

⎡ ⎤= −⎢ ⎥
⎣ ⎦

∑
  (45) 

where Equation (45) can be used to simplify Equation (44), resulting in Equation (46): 

 
1 2 1 2

2 2
2 2 2

1 2 1 2

2r x x x x
r r r r
x x x x

σ σ σ σ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂≅ + + +…⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠   (46) 

 Note that the covariance term, 
1 2x xσ , is typically neglected because it is assumed that the variables 1x  and 2x  are 

statistically independent of one another. The above equation gives the standard deviation of the independent 
variable given the standard deviation of the variables that it depends on. A similar statement can be made for the 
uncertainty, to get the response uncertainty:  

 
1 2 1 2

2 2
2 2 2

1 2 1 2

2c x x x x
r r r ru u u u
x x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂≅ + + +…⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠   (47) 

Equation (47), hence, defines how the uncertainties of underlying variables propagates into the overall response. The 
specific parameters that contribute to the uncertainty of the wheel performance are listed in Table 5 and Table 6. 

3 Results 

3.1 Soil Parameter Variability 

Pressure-Sinkage Test 

 A total of 45 pressure-sinkage tests were performed to analyze the bearing characteristics of the soil. The tests 
were repeated 15 times for three rectangular plates with different widths, b  (3, 5, and 7 cm).  Parameters were 
determined using the five different methods outlined previously in Section 0. 
 Figure 9 shows the fits produced by the first three methods for a single test.  Methods 1 and 3 yield similar 
curves, though varying slightly.  The curve produced by method 2 appears very different and is strongly biased 
towards fitting the initial data points of each test.  Methods 1 and 2 produced results identical to methods 5 and 4, 
respectively.  The same trends of each different method fit are seen in all of the other pressure-sinkage tests. 
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Figure 9: Sample estimation for 5-cm plate. 

 It is important to recognize that no exponential function will closely fit the actual shape of the data curves.  This 
is a direct consequence of the fact that Bekker’s exponential relationship in equation (1) is an empirical estimation, 
not a physical law, and it does not account well for deviance in the early behavior (when sinkage is less than about 
15 mm). Average values of n , eqk , and least-squares error for each fitting method and plate size are shown in Table 

2. 
 

Table 2: Average parameters and error for 3-cm, 5-cm, and 7-cm plates, Bekker’s equation. 

Plate Width, 
b (cm) 

3 5 7 

Method # n keq,3 
[MPa/mn] 

error n keq,5 
[MPa/mn] 

error n keq,7 
[MPa/mn] 

error 

1, 5 1.01 2.48 0.040 0.84 1.90 0.071 1.082 0.231 0.096 
2, 4 1.39 9.89 0.196 1.44 25.7 0.276 1.114 0.266 0.220 
3 1.03 2.66 0.039 0.89 2.21 0.067 0.976 0.252 0.092 
 
 Methods 1, 3 and 5 have relatively small fit errors.  The parameters found by methods 2 and 4 are substantially 
different than those of the other methods; the sinkage exponent n  is much higher and the coefficient keqis much 
larger.  As noted previously, these methods fit low-sinkage data points well but poorly match the rest of the data. 
 Several important conclusions may be drawn from these results.  First, Wong’s method (method 1) has proven to 
be very reliable as compared to a similar numerical method (method 3).  Secondly, it gives a very good 
approximation to the best fit in the z σ− domain.  Nevertheless, estimation in the log domain and in the z σ−
domain will yield different parameters. A third observation is that the weighting factor 2σ  is necessary for best 
results in the log-log domain. 
 The error found by methods 1 and 3 is comparable.  The ( n , eqk ) parameter pairs found by methods 1 and 3 also 

produce a similar pressure-sinkage curve, so it is concluded that either method may be used for comparable 
predictions.  It is interesting to note, however, that the individual parameters yielded from methods 1 and 3 can be 
significantly different despite both yielding a good fit.  

Parameter Covariance 
 The covariance demonstrated by n  and eqk  requires attention before proceeding to a statistical analysis.  Figure 

10 illustrates the apparent correlation of Bekker’s parameters from Section 0.  Theoretically, every test should yield 
a similar n, but each plate size should yield a different keq. 
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Figure 10: Relationship between n and keq, Bekker’s equation. 

 In this case, n  and eqk  show positive correspondence.  This correspondence may be explained by noting that 

modifying the units of eqk  has a significant effect. The relationship between n  and eqk  estimations exist because 

different combinations may yield a similar pressure prediction, and because the unit of eqk  is dependent on n  itself: 
 

 
𝑘  𝑢𝑛𝑖𝑡𝑠 =

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  𝑢𝑛𝑖𝑡𝑠
𝑠𝑖𝑛𝑘𝑎𝑔𝑒  𝑢𝑛𝑖𝑡𝑠 ! 

 

(48) 

 To mitigate this difficulty, Reece’s revision of Bekker’s equation (Equation (16)) was implemented so that the 
unit of eqk  is always in pressure units and does not depend on n . Applying Equation (16) (instead of Equation 
(15)) to solve for the parameters resulted in very little n-keq’ correlation for our data, as shown in Figure 11.  For 
each plate size, keq’ demonstrated no visible trend with n. 
 

 
Figure 11: Relationship between n and keq’, Reece’s modification. 
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 For each experimental run, Equation (16) was fit to a plot of the pressure as a function of sinkage. The 
equivalent pressure-sinkage constant, eqk ’, and exponent of sinkage to plate width, n , found in Reece’s equation 
were determined by minimizing an error function based on the least-squares method (analogous to method 3, 
described in Section 0).  The mean and standard deviation were calculated to quantify the experimental variability of 
each soil parameter. The parameters for each data set are recorded in Table 3. 
 

Table 3: Pressure-sinkage parameters and the mean and standard deviation for each plate size, Reece’s equation.                 
Values from experimental runs are italicized. 

Plate Width, 
b (cm) 

3 5 7 

Test # n keq,3’ [MPa] n keq,5’ [MPa] n keq,7’ [MPa] 
1 0.938 0.070 1.208 0.140 1.082 0.231 
2 0.876 0.067 0.784 0.134 1.114 0.266 
3 1.289 0.059 0.774 0.149 0.976 0.252 
4 1.017 0.065 0.839 0.133 0.996 0.250 
5 1.162 0.066 0.773 0.136 1.053 0.210 
6 0.928 0.068 0.983 0.160 0.960 0.217 
7 0.980 0.066 0.775 0.132 1.154 0.236 
8 0.958 0.070 0.848 0.125 1.028 0.222 
9 1.434 0.048 0.716 0.139 1.066 0.270 
10 0.930 0.073 1.053 0.137 1.224 0.327 
11 0.979 0.061 0.874 0.157 1.085 0.288 
12 1.002 0.067 0.938 0.162 1.102 0.245 
13 0.926 0.070 1.130 0.119 1.107 0.254 
14 1.079 0.057 0.797 0.147 1.252 0.262 
15 1.061 0.057 0.851 0.851 1.440 1.440 
Mean 1.037 0.064 0.889 0.141 1.109 0.255 
Std. Dev. 0.152 0.007 0.145 0.013 0.123 0.032 

 
 The standard deviation of the Reece parameters were propagated to uncertainty in pressure by applying the 
statistical techniques described previously Section 0.  The uncertainty of Reece’s model for the pressure, σ , at a 
given sinkage, z , can be obtained as: 

  
'

2 2
2 2 2

'eq
nk

eq

u u u
nkσ

σ σ⎛ ⎞∂ ∂⎛ ⎞≅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂∂ ⎝ ⎠⎝ ⎠  (49) 

where 

  

'
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n
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n
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z
bk

z zk ln
n b b

σ

σ

∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

∂ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠  (50) 
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and the uncertainties of the independent parameters '
eqk

u  and nu  are made equivalent to the standard deviation of the 

pressure-sinkage parameters in Table 3. 
 Figure 12 - Figure 14 show the uncertainty estimation of the pressure-sinkage model for plate widths of 3, 5, 
and 7 cm, respectively, overlaid with the mean and standard deviation of the experimental pressure data.  
 As can be seen in Figure 12 - Figure 14, although Reece’s model does not precisely capture the pressure-
sinkage behavior, the model uncertainty provides a close estimate of the experimental standard deviation.  
 

 
Figure 12: Uncertainty estimation 
for pressure-sinkage test for 3 cm 

plate. 

 
Figure 13: Uncertainty estimation 
for pressure-sinkage test for 5 cm 

plate. 

 
Figure 14: Uncertainty estimation 
for pressure-sinkage test for 7 cm 

plate. 

   
 In contrast, if the uncertainty were to be determined by the standard deviations of Bekker’s parameters, the 
bounds would be much wider than the experimental deviations, as illustrated in Figure 15 - Figure 17. 

 
Figure 15: 3 cm plate, Bekker’s 

parameters. 

 

 
Figure 16: 5 cm plate, Bekker’s 

parameters. 

 

 
Figure 17: 7 cm plate, Bekker’s 

parameters. 

 
 The mean values of Reece’s model parameters for the 5 cm plate (keq,5’ = 0.141, n = 0.889) were used to 
estimate the mean pressure-sinkage curve for the wheel performance analyses in this study.  This plate size was 
selected because its contact patch area most closely resembles that of the single wheel used in this study. 

Direct Shear Test 

 A total of 12 direct shear tests were performed to analyze the shear characteristics of the dry soil. The tests were 
repeated three times for four different normal stresses each (2.08, 2.86, 5.33, and 17.83 kPa).  For each experimental 
run that was carried out for the direct shear test, Equation (23) was fit to a plot of the shear stress as a function of 
shear displacement. The residual shear stress, resτ , and shear modulus, K , found in Equation (23) were determined 
by minimizing an error function based on the least squares method. The parameters for each data set are recorded in 
Table 4. The mean and standard deviation are calculated to quantify the variability of each soil parameter. 
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Table 4: Soil parameters based on shear-displacement curve fits along with the mean and standard deviation for 
each parameter. Values for experimental runs are italicized. 

Normal 
Stress [kPa] 

2.08 2.86 5.33 17.83 

Density 
[g/cm3] 

1.5 (Loose) 1.7 (Dense) 1.7 (Dense) 1.7 (Dense) 

 
maxτ  [Pa] K  [m] maxτ  [Pa] K  [m] maxτ  [Pa] K  [m] maxτ  [Pa] K  [m] 

Test 1 2431.590 5.010E-04 2763.430 1.021E-04 4252.342 2.073E-04 11364.000 1.436E-04 
Test 2 2468.297 6.126E-04 3189.900 1.303E-04 3425.338 2.096E-04 13453.684 1.297E-04 
Test 3 2541.600 6.300E-04 1952.265 2.260E-04 3634.842 2.528E-04 12595.687 1.100E-04 
Mean 2480.496 5.812E-04 2635.198 1.528E-04 3770.841 2.232E-04 12471.124 1.277E-04 
Std. Dev. 56.010 7.000E-05 628.703 6.494E-05 429.948 2.558E-05 1050.396 1.689E-05 

 
 The results of the analysis in Table 4 were used to determine the cohesion and angle of friction of the soil. The 
maximum shear stress and applied normal stress are related using Equation (27), and are shown in Figure 18. 
 

 
Figure 18: The cohesion and angle of friction of the soil are determined using the Mohr-Coulomb failure criteria. 

The cohesion is the intercept of the plot and the angle of friction is the slope. 

 Based on this linear curve fit and Equation (27), the cohesion of the material is equal to 714.971 Pa and the angle 
of internal friction is equal to 33.083 degrees. Using the techniques described in Section 0 and Equation (28), the 
uncertainty is 415.491 Pa and 2.875 degrees for cohesion and internal friction angle, respectively. 
 To demonstrate the propagation of the variability of the experimental parameters to the uncertainty of Janosi and 
Hanamoto’s model, the techniques in Section 0 were applied using the data in Table 4. Figure 19 - Figure 22 
compare the uncertainty estimation of the direct shear tests for varying normal stresses to the mean and standard 
deviation of the experimental data. Although Janosi and Hanamoto’s model does not precisely capture the shear-
displacement behavior for dense soil, the cohesion and angle of friction have been shown to be independent of 
density when using the residual shear stress [10]. It is important to note that the shear modulus is dependent on 
density. Janosi and Hanamoto’s model was used to obtain the mean value of the shear-displacement estimation. The 
uncertainty of Equation (23) for the shear stress, τ , at a given shear displacement, j , is approximated as: 

  

2 2
2 2 2

res
re

K
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u u u
Kτ τ

τ τ
τ

⎛ ⎞∂ ∂⎛ ⎞≅ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠  (51) 
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where 
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and the uncertainties, 
res
uτ  and Ku , of the independent parameters are determined by the standard deviation of the 

parameters determined by the direct shear tests in Table 4. 
 

 
Figure 19: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 
2.08 kPa on loose soil. 

 
Figure 20: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 
2.86 kPa on dense soil. 

 
Figure 21: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 
5.33 kPa on dense soil. 

 
Figure 22: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 
17.83 kPa on dense soil. 

3.2 Wheel Performance Uncertainty 

 Force sensors at five locations across the width of the wheel (Figure 6) measured the normal and tangential 
stress distributions (Figure 23 - Figure 28). Similarly, the drawbar pull, torque, and wheel sinkage at five different 
slip ratios ranging from -70% to 70%, and two different normal loads of 70 N and 135 N, shown in Figure 29 and 
Figure 30, were measured using the single-wheel test bed in Figure 4.  
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 The uncertainty estimation method described in Section 0 is used along with the soil parameters in Table 5 and 
wheel properties in Table 6 to compare the wheel performance model to the experimental values of wheel 
performance. The normal and tangential stresses at the wheel-soil interface were calculated from Equations (16) and 
(30), respectively, and plotted in Figure 23 - Figure 28. The drawbar pull, torque, and wheel sinkage at three 
different slip ratios ranging from 10% to 70%, and two different normal loads of 70 N and 135 N, shown in Figure 
29 and Figure 30, were calculated using Equations (37), (38), and (39). 
 

Table 5: Soil parameters. 

Parameter Value Uncertainty Units 
Pressure-sinkage constant, '

, 5eq b cmk =  1.41x105 1.30x104 Pa 

Exponent of (sinkage\width), 5b cmn =  0.889 0.145 - 
Cohesion, c  714.971 415.491 Pa 

Angle of internal friction, ϕ  33.083 2.875 degrees 
Shear modulus, K  5.571x10-4 7.525x10-5 m 

Coefficient for maximum stress, 1c  0.5 0.2 - 

Coefficient for maximum stress, 2c  0.5 0.2 - 
 

Table 6: Wheel properties. 

Parameter Value Uncertainty Units 
Normal force, zF  70, 135 5% N 
Wheel radius, r  0.13 0 m 
Wheel width, b  0.16 0 m 

 
 The uncertainty in the wheel performance can be calculated using the techniques described in Section 0. The 
model uncertainties of the normal and tangential stresses are plotted against the experimental data in Figure 23 - 
Figure 28. The uncertainty bars are determined numerically [16] using a finite differencing technique to obtain the 
sensitivity of the wheel performance with respect to each variable. Note that the model uncertainty envelope does 
not sufficiently capture the experimental data.  
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Figure 23: Normal stress vs. contact 

angle for 10% slip. 

 

 
Figure 24: Normal stress vs. contact 

angle for 30% slip. 

 

 
Figure 25: Normal stress vs. contact 

angle for 70% slip. 

 

 
Figure 26: Tangential stress vs. 

contact angle for 10% slip. 

 

 
Figure 27: Tangential stress vs. 

contact angle for 30% slip. 

 

 
Figure 28: Tangential stress vs. 

contact angle for 70% slip. 

 
 Finally, the uncertainty of the soil parameters is propagated to the drawbar pull, torque, and sinkage of the 
wheel, as shown in Figure 29 and Figure 30. The uncertainty bars are determined numerically [16] using a finite 
differencing technique to obtain the sensitivity of the wheel performance with respect to each variable and are 
plotted along with the measurements based off the individual experimental runs. Note that the model uncertainty 
envelope does not sufficiently capture the experimental data, particularly in torque and sinkage. 
 

   
Figure 29: The uncertainty of the drawbar pull, torque, and sinkage of the wheel for a plate size of 5 cm x 16 cm 

and vertical force of 70N. 
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Figure 30: The uncertainty of the drawbar pull, torque, and sinkage of the wheel for a plate size of 5 cm x 16 cm 

and vertical force of 135N. 

4 Summary 

4.1 Soil Parameter Variability 

 The first objective of this paper was to characterize the variability of measured soil parameters given 
experimental data. To determine the soil parameters associated with normal loads, the pressure and sinkage were 
measured with a plate that penetrated the soil under controlled test conditions. To determine the soil parameters 
associated with shearing loads, a standard direct shear test was performed under various normal loads. The 
individual soil parameters were obtained from the pressure-sinkage tests by fitting the dimensionless form of 
Reece’s equation to each experimental data set. Similarly, Janosi and Hanamoto’s equation for shearing was fit to 
the direct shear test to determine the soil parameters for each experimental data set. The mean and standard 
deviation were calculated to quantify the variability of each soil parameter. This experimental variability was used to 
calculate the uncertainty of the soil stress. Based on Figure 12 - Figure 14 and Figure 19 - Figure 22, the model 
uncertainties show good agreement with the actual standard deviations of the experimental measurements. Since the 
model parameters were estimated from the same experimental data, this uncertainty correlation validates the 
uncertainty propagation theory employed in this paper. 

4.2 Wheel Performance Uncertainty 

 The second objective of this contribution was to quantify the uncertainty in wheel performance. Such an 
investigation requires that the wheel can be accurately modeled. The sinkage of the rigid wheel model, based on the 
work of Wong and Reece, was determined by relating the weight of the wheel and the stresses acting on it in the 
vertical direction. Given the uncertainties of the individual soil parameters, it was possible to determine the overall 
uncertainty of the wheel performance (drawbar pull, torque, and sinkage) using the uncertainty propagation 
technique described in Section 0. The uncertainties of the normal and tangential stresses were plotted against the 
experimental data for a single wheel traversing over the soil in Figure 23 - Figure 28. Additionally, the uncertainty 
of the soil parameters was propagated to the drawbar pull, torque, and sinkage of the wheel, as shown in Figure 29 
and Figure 30. The wheel performance model fails to capture much of the experimental stress data and has little 
overlap with the drawbar pull, torque, and sinkage. It is evident from the results that the classical terramechanics 
model used in this paper is not suitable for the analysis of lightweight vehicles that exhibit relatively low ground 
pressures (i.e. 15-35 kPa).  
 Several modifications could be made improve the accuracy of this model for lightweight vehicles. For example, 
the flat plate assumption of pressure-sinkage models has been shown to be inaccurate for lightweight vehicles and 
would likely benefit from revisions according to the recent results for diameter-dependent models reported in [17]. 
Further, the shear characteristics of the soil, shown in Figure 19 - Figure 22, are not adequately captured and could 
be more accurately estimated from making a modification to Equation (23) such as in [18] to account for the 
nonlinear “hump” that occurs in dense soil. Lastly, based on the size of the vehicle and the nature of the terrain, 
alternate methods could be employed to capture the behavior of each individual soil particle [19]. 
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